Data Innovation Community “Industrie 4.0”

Ein wichtiger Treiber des starken Datenwachstums ist die Industrie 4.0 und damit untrennbar verbunden das “Internet der Dinge”. Durch das Internet wachsen reale und virtuelle Welt zum Internet der Dinge zusammen. Im Bereich Fertigung sind Maschinen, Produktionsanlagen und Lagersysteme zunehmend in der Lage, selbstständig Informationen auszutauschen, Aktionen anzustoßen und einander zu steuern. Ziel ist es, Prozesse in den Bereichen Entwicklung und Konstruktion, Fertigung und Service signifikant zu verbessern. Diese vierte industrielle Revolution steht für die Verknüpfung von industrieller Fertigung und Informationstechnologie – und damit für eine neue Stufe an Effizienz und Effektivität. Mit Industrie 4.0 entstehen neue Informationsräume, die ERP-Systeme, Datenbanken, das Internet sowie Echtzeitinformationen aus Fabriken, Lieferketten und Produkten miteinander verbinden.

In der Data Innovation Community “Industrie 4.0” sollen wichtige datengetriebene Aspekte der vierten industriellen Revolution erforscht werden, bspw. die vorausschauende Wartung von Produktionsressourcen oder auch das Auffinden von Anomalien in Produktionsprozessen.

Die Data Innovation Community “Industrie 4.0” richtet sich daher an alle interessierten Unternehmen und Forschungseinrichtungen, die bzgl. dieser Aspekte gemeinsame Forschung betreiben wollen. Dies schließt sowohl Anwenderunternehmen mit ein als auch Unternehmen der Automatisierungsbranche sowie der IT-Branche.

DIC-Leitung

Plamen Kiradjiev
kiradjiev@de.ibm.com

IBM

plamen-kiradjiev

Dr. Tilman Becker
tilman.becker@dfki.de

Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI)

tilman-becker

Zu einer Mitarbeit in der Data Innovation Community oder Teilnahme an deren Treffen kontaktieren Sie bitte das DIC per E-Mail unter industrie@sdil.de.

Mitglieder können auf die internen Foren im SAP Jam zugreifen.

Risk Management 4.0 – Risk Analysis of Investment Assets

The core idea of the collaborative research project “Risk Management 4.0” is the exploratory analysis regarding the possibility of machine learning for predictive causal analysis of risk factors across investment portfolios. Such automated predictive risk analysis is also in demand by the German Federal Financial Supervisory Authority (BaFin) in its consultation paper of July 16, […]

SDSC-BW: Object recognition in technical drawings

SDSC-BW: Object recognition in technical drawings

Published November 2019. EDI provided the SDSC-BW with around 1,000 technical drawings in PDF format. In these technical drawings, different standards are used for surface specifications, dimensions and references. The fonts of the product descriptions are not uniform and are often supplemented by handwritten notes due to changes in the product descriptions. The work of […]

Evaluation of methods for automatic reconfiguration of transport drones.

Evaluation of methods for automatic reconfiguration of transport drones.

Published November 2019. The ability to make decisions autonomously and act on them is a core theme of artificial intelligence. Nevertheless, transport drones today are not able to detect and correct errors in their system autonomously. This leads to drone crashes and can result in high property damage and personal injury. To ensure the functional […]

Distributed evaluation of high-frequency measurement data from industrial production for quality optimization and condition monitoring

Publiziert November 2019. Downtimes of machines and equipment in manufacturing are expensive and should be avoided as far as possible. A frequent cause of machine downtime is damage to bearings due to wear, corrosion or overload. These causes of damage were detected using high-frequency acceleration and structure-borne sound sensors. This information can be further used […]

Short-term forecasting of people flows

Short-term forecasting of people flows

Published November 2019. The project partner SIS has been commercially active in the field of people flow analysis at major events for many years. Here, for example, smartphone apps are used to record movement data of visitors to the event and evaluate it in real time in order to provide rescue forces, for example, with […]

SDCS-BW: Finding a better starting position

SDCS-BW: Finding a better starting position

Published June 2019. The data provided by ArtiMinds came from an experiment in which a robotic arm searches for holes to place a component on an electronic circuit board. The experiment consisted of 120 runs that generated a total of 2,487 observations. For each observation, the robot arm’s start and end positions, force, and run […]

SDCS-BW: Intelligent sales volume prediction

SDCS-BW: Intelligent sales volume prediction

Published April 2019. Schlötter provided SDSC-BW’s data analytics experts with sales data from the past 13 years: a total of about one million data elements. The data included sales information for each product on each day, such as sales volume, warehouse address, customer number, order time, delivery time, etc. To reduce the losses caused by […]